Interpretation and Semiparametric Efficiency in Quantile Regression under Misspecification

نویسنده

  • Ying-Ying Lee
چکیده

Allowing for misspecification in the linear conditional quantile function, this paper provides a new interpretation and the semiparametric efficiency bound for the quantile regression parameter β(τ) in Koenker and Bassett (1978). The first result on interpretation shows that under a mean-squared loss function, the probability limit of the Koenker–Bassett estimator minimizes a weighted distribution approximation error, defined as FY(Xβ(τ)|X) − τ, i.e., the deviation of the conditional distribution function, evaluated at the linear quantile approximation, from the quantile level. The second result implies that the Koenker–Bassett estimator semiparametrically efficiently estimates the quantile regression parameter that produces parsimonious descriptive statistics for the conditional distribution. Therefore, quantile regression shares the attractive features of ordinary least squares: interpretability and semiparametric efficiency under misspecification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficiency Bounds for Semiparametric Estimation of Quantile Regression under Misspecification

Allowing for misspecification in the linear conditional quantile function (CQF), we calculate the semiparametric efficiency bound for the solution to the population quantile regression (QR) problem or the best linear predictor for a response variable under the asymmetric check loss function. The pseudo-true QR parameter that solves a non-differentiable unconditional moment restriction is interp...

متن کامل

Bayesian semiparametric additive quantile regression

Quantile regression provides a convenient framework for analyzing the impact of covariates on the complete conditional distribution of a response variable instead of only the mean. While frequentist treatments of quantile regression are typically completely nonparametric, a Bayesian formulation relies on assuming the asymmetric Laplace distribution as auxiliary error distribution that yields po...

متن کامل

Efficient Semiparametric Estimation of a Partially Linear Quantile Regression Model

This paper is concerned with estimating a conditional quantile function that is assumed to be partially linear+ The paper develops a simple estimator of the parametric component of the conditional quantile+ The semiparametric efficiency bound for the parametric component is derived, and two types of efficient estimators are considered+ Asymptotic properties of the proposed estimators are establ...

متن کامل

Massachusetts Institute of Technology Department of Economics Working Paper Series Quantile Regression under Misspecification with an Application to the Libraries Quantile Regression under Misspecification, with an Application Wage Structure

Quantile regression (QR) fits a linear model for conditional quantiles, just as ordinary least squares (OLS) fits a linear model for conditional means. An attractive feature of OLS is that it gives the minimum mean square error linear approximation to the conditional expectation function even when the linear model is misspecified. Empirical research using quantile regression with discrete covar...

متن کامل

Semiparametric Quantile Regression with High-dimensional Covariates.

This paper is concerned with quantile regression for a semiparametric regression model, in which both the conditional mean and conditional variance function of the response given the covariates admit a single-index structure. This semiparametric regression model enables us to reduce the dimension of the covariates and simultaneously retains the flexibility of nonparametric regression. Under mil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015